Crown preparation techniques utilising the dental operating microscope

Dr Craig Barrington
USA

Successful crown preparations start at the diagnosis. Early detection of the need for a full-crown restoration can minimise many difficulties associated with the preparation of a tooth for a crown, obtaining an accurate impression, and the achievement of a precise fitting, long-lasting, aesthetic restoration. Proper diagnosis is the all-important first step.

The second most important component is vision. The dental operating microscope (OM) has proven to be valuable in endodontics but it is just as valuable – or more valuable – for restorative efforts. High magnification above 4x is necessary to improve, the crown and the cleanliness for the patient. A poor finish line and a poorly positioned finish line not only result in poor impressions and final restoration fit, but also make for poor-fitting provisional.

If the finish line cannot be found, one cannot properly trim and fit the provisional restoration and remove any temporary cement properly. When patients return, gingival tissues can be irritated, making the placement of the final restoration challenging. If by chance one does achieve a good fit, then, when the soft tissue heals, the junction of the final restoration and the soft tissue heals, the junction of the final restoration chal -lenges the task of crown preparation. Haemorrhagic areas, or those that are deep subgingivally, can be difficult to visualise and control. Early diagnosis can minimise these tissue complications. Good tissue management protocol is paramount to the success of the final restoration.

Tissue management is the fourth concern and it points back to the number one concern of good finish lines. Waiting until a tooth is severely decayed or broken down. Working deep subgingivally and irritate tissues exponentially complicates. Working deep subgingivally and irritate tissues exponentially complicates. Working deep subgingivally and irritate tissues exponentially complicates.

Radiosurgery: A useful instrument
Lasers have been used in dentistry for quite some time but their cost and other fundamental limitations make them difficult to acquire and use. However, radiosurgery has been in use for years and is an affordable and useful instrument that can solve many problems regarding finishing-line visualisation, finish-line exposure and haemorrhage control. In addition, this simple, conservative instrument can make cord placement quick and simple by preserving the gingival architecture.

The Parkell unit with a #118 tip allows the creation of a very conservative trough or trench around a tooth. In combination with good visualisation using the OM and good patient and procedural management, the rubber dam, we can reliably create a finish line, expose it, place a cord if necessary and control. Early diagnosis can minimise these tissue complications. Good tissue management protocol is paramount to the success of the final restoration.

Haemorrhagic areas, or those that are deep subgingivally, can be difficult to visualise and control. Early diagnosis can minimise these tissue complications. Good tissue management protocol is paramount to the success of the final restoration.

Good patient management
Working at a high magnification with the OM requires good patient and procedural management. If the patient moves about or is uncomfortable, the operator cannot concentrate on proper reduction or the task of placing a solid, conservative finish line on the tooth. Therefore, the third most important component in crown preparation success is the dental rubber dam.

For most using a dental dam for a crown preparation is a widely misunderstood concept. Simply placing a dental dam is the most under-utilised, inexpensive and simple piece of equipment an operator can incorporate into his/her crown preparation protocol. With a little training, dentists and assistants can learn techniques that will benefit all individuals involved in the restoration of a tooth. (Please note that in all of the figures 1–10, a dental dam is in place before and after.)

With a radiosurgical unit, inflamed tissue can be removed such that the healthier tissue is exposed to our haemostatic agents. Healthy haemorrhagic tissue responds better to haemostatic agents than inflamed haemorrhagic tissue does. When inflamed tissue is encountered, use of high magnification and the radiosurgical tip to conservatively contour or remove this nuisance tissue can provide a predictable result. Reducing tissue thickness but not modifying tissue height can leave the gingival tissue in proper position such that we achieve nice aesthetics in our final result.

Handpiece and bur choices
The final item and of least concern in this protocol are of fairly obvious choices. There is existing debate between electric versus air-driven handpieces and regarding which bur is best for which task. Specifying a particular handpiece or bur would be similar to directing an artist regarding which paintbrush to use. What works in one’s hand is the most important factor and that changes from individual to individual and situation to clinical situation. If a practitioner follows the diagnosis, magnification, isolation and tissue management protocol, then bur and handpiece choices will fall into place on their own with time and experience. I typically use an air-driven handpiece and an assortment of Axis turbo diamonds.

In a stepwise fashion for an individual crown preparation, the primary concern is achieve-
ment of proper anaesthesia such that the patient is comfortable in all capacities. Once this is done, the rubber dam is placed. I use a split- or slit-dam technique. The key to success with this rubber dam technique and crown preparation is the distance at which the holes are placed apart from each other. Generally speaking, holes are punched too close together for this technique. It is best to punch the holes at a distance from each other on the dam that essentially matches the true anatomical distance between the teeth to be isolated.

Next step: Occlusal reduction
Once the tooth has been isolated and the patient is confirmed to be comfortable, the next step is the occlusal reduction. This makes the tooth shorter and allows better access and visualisation for the axial reduction. There is an existing restoration in the form of an alloy or composite filling, it is removed and the tooth is reduced to the level of the depth of the crown preparation.

From the handpiece. On the clean(er) of the water spray that will keep our mirrors and visualisation for the axial reduction. The OM places us in an ergonomic position for doing this and the rubber dam creates a nice situation for a high volume suction to create an air flow which the holes are placed apart from each other. Generally speaking, holes are punched too close together for this technique. It is best to punch the holes at a distance from each other on the dam that essentially matches the true anatomical distance between the teeth to be isolated.

This is the easier of the two surfaces to break. First, it is further forward in the mouth and therefore easier to reach; and, second, it is a shorter contact as it is against a premolar. Following the mesial contact break, I continue around the tooth through the mesio-buccal line angle onto the buccal surface. I then break the distal contact, also moving from the palatal side to buccal direction. The most challenging area to prepare on an upper right first molar is the disto-buccal (DB) line angle. Therefore, I prepare the tooth as far as I can through the distal contact and around the DB line angle. I then complete the buccal reduction and connect the buccal finish line at the DB line angle.

Tissue management and cord placement
Once all occlusal and axial reductions have been accomplished, the next step is tissue management and cord placement. This is a very conservative step under the OM. The OM allows precice and accurate tissue removal, and increases tactile sense and the steadiness of our hands.

A size 00 cord is placed in a haemostatic agent to soak at the start of the procedure. Literature supports that a cord soaked for 15 to 20 minutes in a haemostatic agent works better than any other alternative cord/haemostatic agent combination or method.

Personal clinical experience and observations find this to be true. With the radiolucent gingival trough in place, the cord placement is a simple, pressureless method. With copious air/water syringe rinsing, in the time that it takes to place the cord and rinse most haemorrhage will be controlled, if any.

Now the sharpness and position of the finish line can be re-evaluated and refined. An ultrasonic unit is used, with the irrigation on, to clean the crown preparation and remove debris and/or other debris. Occasionally, a BUC-I endodontic tip (Ultradent) which is about the same size and shape as a 1DT diamond bur, can be used in the ultrasonic unit to refine the crown preparation finish lines. This is done with the irrigation feature turned off on the ultrasonic unit. To sharpen, slightly
See four times more
The new Synea range with LED+

One light – four advantages, the perfect combination. Optimal illumination; a colour rendering index of more than 90; a perfectly positioned LED; and a small head: Four reasons why you should use the new Synea turbines with LED+. People have Priority! W&H supports the humanitarian organization SOS Children’s Villages. Get involved! Further information at wh.com
refine, or minimally move a finish line, I occasionally run the handpiece at a very low speed without water.

Rinsing and drying
Once all refinements have been accomplished, the preparation is rinsed and dried and for the first time, the entire preparation is evaluated in one view. The uniformity of the axial reduction and the position of the gums in relation to the cord, and the cord in relation to the finish line are all evaluated. The axial reduction should have uniform thickness throughout the different positions, as different areas need more reduction, while others need less, based on material and aesthetic demands. There should be no areas where the gingiva is over the cord. If this does occur, that area is refined with the radiosurgical unit to ensure a full view of the cord 360° around the tooth of tooth-tissue-cord.

One of the main reasons we use polyvinyl-siloxane impression materials is because they are repourable. If adequate strength and thickness of this material are not obtained through the proper radiosurgical troughing technique, then the impression may tear upon separation of the model. Having an impression tear after the first pour limits the ability to fabricate a well-fitting restoration.

When a clear tooth-tissue-cord and a visible, sharp finish line are present, the rubber dam is removed and the preparation is evaluated in all dimensions with the naked eye. At times the OM can create a ‘cannot-see-the-forest-for-the-trees’ type of situation, so it is always valuable to take another look from a different perspective without the OM. This can allow one to identify sharp angles or irregularities in the preparation.

Full-arch impressions
A full-arch impression is taken with a single tray for the arch that contains the prepared tooth. For the opposing arch, a full-arch alginate impression is taken. With full-arch impressions, a bite registration is usually not required. Most often, one chairside assistant is utilized for the entire procedure, but for difficult and challenging impressions, a second assistant may be utilized for saliva or tongue control.

Once all the impressions have been taken, a provisional is fabricated, refined, polished and cemented. Shades are taken and the patient is released with post-operative instructions.

Reference

Contact Info
Dr Craig M. Barrington practices general dentistry in Waxahachie, USA, with his wife, and has a particular interest in endodontics and microscope dentistry. He can be contacted at cbdds002@prodigy.net